14. I LIVE TWO BLOCKS WEST OF YOU

introduction:
position of one object relative to another

Suppose you're running errands, and meet someone who recently moved to the street where you live. During the conversation, your 'new neighbor' comments on their home's location relative to yours:

- Oh, we live only two blocks from you!

Do you know where they live? Not exactly. They could live at either of the places shown above: two blocks to the west, or two blocks to the east. However, suppose they were to instead say:

- Oh, we live two blocks west of you!

Now, their location is uniquely determined. Such information about the position of one object relative to another is commonplace in English, as further illustrated by the following phrases:

- The math book you want is three from the left on that shelf.
- She's two inches shorter than you are.
- The exit you need is the second one after the underpass.

This type of information finds its mathematical counterpart in the concept of order.

Suppose you're given a collection of numbers (all different), and asked to 'order them'. If all the numbers are positive, then you'd probably order them according to their size: smallest (closest to zero) to largest (farthest from zero). For example, the numbers $1, \frac{1}{4}, 2 \frac{1}{3}, 5$, and 1.5 could be ordered like this:
$\begin{array}{lllll}\frac{1}{4} & 1 & 1.5 & 2 \frac{1}{3} & 5\end{array}$
Observe that if you were to walk from left to right along the number line, you'd first encounter $\frac{1}{4}$; then 1 ; then 1.5 ; then $2 \frac{1}{3}$; then 5 .

ordering an arbitrary collection of real numbers
comparing any two real numbers

If the collection contains negative numbers, then the most natural ordering occurs by listing them as they would be encountered in walking from left to right along the number line. Using this idea, the numbers $-2,0,-\frac{1}{2}, 3$, and $\frac{1}{3}$ would be ordered as

This scheme provides a natural way to order any collection of (different) real numbers. Now, let's begin to make this idea precise.

Given any two real numbers x and y, exactly one of the following three situations exists:

- $\quad x$ equals y (that is, x and y live at the same place on a real number line);
- $\quad x$ lies to the left of y on a number line; or
- $\quad x$ lies to the right of y on a number line.

EXERCISES

Let x, y, and z be real numbers.

1. Suppose that x lies to the left of y, and y lies to the left of z. What (if anything) can be said about the relationship between x and z ?
2. Suppose that x lies to the left of y, and z also lies to the left of y. What (if anything) can be said about the relationship between x and z ?
3. Suppose that x and y are both positive, and x lies to the left of y on the number line. What (if anything) can be said about the relationship between $-x$ (the opposite of x) and $-y$ (the opposite of y)?
4. Suppose that x and y are both negative, and x lies to the right of y. Which number is bigger (farther from zero)? Smaller (closer to zero)?
mathematical sentences to describe order relationships

There are four mathematical sentences that make it easy to talk about the order relationships between any two real numbers:

$$
x<y \quad x>y \quad x \leq y \quad x \geq y
$$

As with all mathematical sentences, you should know the correct way to read each of these sentences, and the condition(s) under which each is true or false. This is the next topic of discussion.

sentences:	sentence	how to read		
$x<y$ $x>y$ $x<y$ $x \leq y$ $x>y$	x is less than y	TRUE when x lies to the left of y on		
$x \geq y$	$x \leq y$	x is greater than y		a number line; FALSE otherwise
:---				

memory devices

EXAMPLES

The following memory devices may be useful:

- In any true sentence, the 'fat' end of the verb opens to the number that lies farthest to the right on the number line. (Perhaps imagine the fat end 'gobbling up' the right-most number.)

$$
x>y
$$

'fat' end opens towards x x lies farthest to the right

$$
x<y
$$

'fat' end opens towards y y lies farthest to the right

- If you let the verb < 'fall', then it looks like the letter 'L', as in 'Less than' or 'to the Left of'. So if you want to determine if the sentence ' $x<y$ ' is true, think to yourself:

$$
\text { Is } x<y ?
$$

Is x Less than y ?
Does x lie to the Left of y on a number line?

- The symbol $>$ is easily made into a capital letter ' R ', as in 'greate \mathbf{R} than', or 'to the Right of':

Whenever you come across a sentence of the form ' $x<y$ ', think to yourself: does x lie to the left of y on a number line?
Whenever you come across a sentence of the form ' $x>y$ ', think to yourself: does x lie to the right of y on a number line?
The following examples illustrate the thought process you could go through to determine whether a given sentence is true or false:

sentence how to read aloud thought process

$-1>-3$	'negative one is greater than negative three'
$-2<-3$	'negative two is less than negative three'
$2 \geq 2$	' 2 is greater than or equal to 2
$3 \geq 2$	' 3 is greater than or equal to 2
$3 \leq 2$	' 3 is less than or equal to 2

Does -1 lie to the right of -3 ? Yes! The sentence is true.
Does -2 lie to the left of -3 ? No! The sentence is false.
Is 2 greater than 2 , or is 2 equal to 2 ? Yes: 2 is equal to 2 . The sentence is true.
Is 3 greater than 2 , or is 3 equal to 2 ? Yes: 3 is greater than 2 . The sentence is true. Is 3 less than 2 , or is 3 equal to 2 ? No: both considerations are false. The sentence is false.

CAUTION!
Do NOT read
${ }^{\prime} x<y$ '
like this...

DO NOT read the sentence ' $x<y$ ' as ' x is smaller than y '. The correct way to read it is: ' x is less than y '. Being 'smaller than' and being 'less than' are two different ideas:

- 'Smaller than' means closer to zero.
- 'Less than' means farther to the left on a number line.

For positive numbers, the two ideas coincide nicely: x is smaller (closer to zero) than y, precisely when x lies to the left of y :

However, consider a more general situation. The sentence ' $-5<1$ ' is true, since -5 lies to the left of 1 . But would you really want to say that -5 is 'smaller' than 1? (No!)
The same caution applies to the sentence ' $x>y$ '. Be sure to read it as ' x is greater than y ', NOT ' x is bigger than y '.

EXERCISES \begin{tabular}{l}
5. State how you would read each of the following sentences. Then, state

whether the sentence is (always) true, (always) false, or ST/SF:

| (a) $1<3$ | (e) $x \leq 1$ |
| :--- | :--- | :--- |

| (b) $2 \leq 2$ | (f) $x \geq-1$ |
| :--- | :--- | :--- |
| (c) $-1>-3$ | (g) $-1 \geq 1$ |

| (d) $-1<-3$ | (h) $x \geq x$ |
| :--- | :--- |

6. Fill in the blanks:

Being 'bigger than' has to do with being

Being 'greater than' has to do with being
\end{tabular}

the mathematical word 'OR'	Precisely: For all real numbers x and y, $x \leq y \quad \Longleftrightarrow \quad(x<y) \quad \text { OR } \quad(x=y)$
	The mathematical word 'OR' is defined via the following truth table: $A \quad B \quad A \text { OR } B$
	T T T
	T F T
	F T
	F F F
	Thus, an 'OR' sentence is true if at least one of the subsentences is true. The mathematical words 'AND' and 'OR', and the symbol \Longleftrightarrow, will be discussed in later sections.

greatest
least If you are asked for the least number in some collection, then you're being asked for the number that lives farthest to the left on a number line. (Don't confuse this with 'smallest', which means closest to zero, but not equal to zero.)
Every finite set of numbers will have a greatest and a least member. An infinite set of numbers may or may not have a greatest/least member.

EXERCISES	7. Consider the set $S=\{4,3,2,1\}$. What is the greatest member? The least?
8. Consider the set $S=\{1,2,3, \ldots\}$. Does S have a greatest member? A least	
member?	
9. Consider the set of negative integers, $\{-1,-2,-3, \ldots\}$. Does this set have	
a greatest member? A least member?	
10. Consider the set of positive real numbers, $(0, \infty)$. Does this set have a	
greatest member? A least member?	
11. Consider the set $\left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\right\}$. Does this set have a greatest member?	
A least member?	

the phrases:

'at least'
'at most'
'at least'
The sentence ' x is at least 5 ' means that the least x is allowed to be is 5 ; it can be 5 , or any number greater than 5 . So, the phrase ' x is at least 5 ' means ' $x \geq 5$ '.

The sentence ' x is at most 10 ' means that the most x is allowed to be is 10 ; it can be 10 , or any number less than 10 . So, the phrase ' x is at most 10 ' means ' $x \leq 10$ '.

EXERCISES

12. Remember that mathematical sentences are often read in slightly different ways, depending on their context. How do you suppose you would read the sentence ' $x \geq 5$ ' in each of the following contexts?
(a) For all $x \geq 5 \ldots$
(b) Let $x \geq 5$.
13. Translate each of the phrases into a mathematical sentence:
(a) t is at most 2
(b) t is at least 2
(c) y is at most -2
(d) y is at least -2
14. Translate each of the following mathematical sentences into an English phrase using the words 'at least' or 'at most':
(a) $t \leq 4$
(b) $t \geq 4$
(c) $y \leq-4$
(d) $y \geq-4$
an entire class of sentences, each having the same form
' x is at least k '

How do we know which variable is which?

The author would like to make a definition that covers a whole class of sentences, including all the following particular instances:

x is at least 2	x is at least -2
x is at least $\frac{1}{2}$	x is at least -3.5
y is at least 4	y is at least $-\frac{1}{3}$
z is at least 7	z is at least -7
\ldots	\ldots

Each of these sentences has a similar form:

> some variable is at least some specific number

Given a sentence of this form, we're interested in the values of the variable that make the sentence true; the 'specific number' is fixed-constant-not allowed to change - within the sentence.

To accomplish the feat of describing this whole class of sentences in one fell swoop, people often use the letter k (as in the incorrect spelling 'konstant') to denote the number to be held constant, thus yielding the sentence

$$
\text { ' } x \text { is at least } k \text { '. }
$$

Notice that the sentence ' x is at least k ' has two variables: x and k. The variable x has universal set \mathbb{R}. The variable k has universal set \mathbb{R}. However, the two variables serve different purposes:

- $\quad x$ is allowed to vary within a given sentence;
- $\quad k$ is fixed within a given sentence, and only allowed to vary from sentence to sentence.

In the sentence ' x is at least k ', how do we know which variable is which? That is, which variable is allowed to vary within the sentence, and which is being held constant for a given sentence? Mathematical conventions! The variable k is conventionally used to denote something that is to be held constant in a particular sentence. Also, letters from the beginning of the alphabet (like a, b, and c) frequently denote constants.
This idea of 'varying within a sentence' versus 'varying from sentence to sentence' is difficult. Here's some practice:

EXERCISES	15. Give three sentences of the form ' x is at most k '. (Each sentence should use the variable x, but not k.) 16. Give three sentences of the form ' $x=k$ '. (Each sentence should use the variable x, but not k.) 17. Give three sentences of the form ' $a x+b y=c$ '. (Assume x and y vary within the sentence; a, b and c are constant within a given sentence.)

sentences that are completely
interchangeable

We have seen that the sentences
x is at most 10
and

$$
x \leq 10
$$

have the same meaning. They're completely interchangeable. We can use whichever sentence is most convenient to use in a particular situation. If one sentence is true, so is the other. If one sentence is false, so is the other.

equivalence
of sentences

summary:
' x is at least k '
' x is at most k '

This idea of 'looking different, but having the same truth value' is made precise by the mathematical idea of equivalence. Equivalence of sentences will be discussed in detail in a future section. For now, there are several things that you must know:

- Although the words 'equal' and 'equivalent' are used almost interchangeably in English, they have VERY different uses in mathematics!
- Generally, we talk about EXPRESSIONS being EQUAL:

When two NUMBERS are EQUAL, this means that they live at the same place on a real number line.
When two SETS are EQUAL, this means that they have precisely the same members.

- Generally, we talk about SENTENCES being EQUIVALENT: this has to do with the sentences having the same truth values.

The sentences ' x is at least k ' and ' x is at most k ' are summarized in the following table. The column labeled 'equivalent sentence' gives a form of the sentence that looks different, but that has the same truth values as the original sentence.

$$
\text { sentence } \quad \text { meaning of sentence } \quad \text { equivalent sentence }
$$

x is at least k	the least x is allowed to be is $k:$ so, x can equal k, or x can be greater than k
x is at most k	the most x is allowed to be is $k:$ so, x can equal k, or x can be less than k

An equation (ee-KWEY-shun) is a mathematical sentence that uses the verb ' $=$ '. Here are some examples of equations:

$$
\begin{aligned}
3 & =4 \\
x+1 & =1+x \\
x+1 & =x+2 \\
x & =3
\end{aligned}
$$

a false equation
an equation that is always true
an equation that is always false (Why? Keep reading!) an equation that is sometimes true/sometimes false

An inequality (in-ee-KWAL-i-tee) is a mathematical sentence that uses one of the four verbs: $<, \leq,>$, or \geq. Observe that the prefix 'in' is frequently used in English to negate something: inability, incomplete, indecisive, inept. Thus, inequality has to do, roughly, with being 'not equal'. Here are some examples of inequalities:

$$
\begin{array}{cc}
-1<-3 & \text { a false inequality } \\
-1>-3 & \text { a true inequality } \\
x<x+1 & \text { an inequality that is always true (Why? Keep reading!) } \\
x-1>x & \text { an inequality that is always false (Why? Keep reading!) } \\
x \geq 1 & \text { an inequality that is sometimes true/sometimes false }
\end{array}
$$

If we know where
x lives, where do
$x+1$ and $x-1$ live?

Some of the previous examples merit special attention:

- Consider the inequality ' $x<x+1$ '. Let x be any real number. Then, $x+1$ lives one unit to the right of x on a number line. Therefore, x always lies to the left of $x+1$; so the sentence ' $x<x+1$ ' is always true.

- Consider the inequality ' $x-1>x$ '. Let x be any real number. Then, $x-1$ lives one unit to the left of x on a number line. Therefore, $x-1$ never lies to the right of x, so the sentence ' $x-1>x$ ' is always false.

$x-1$	x

EXERCISE

18. Classify each of the following sentences as an equation or an inequality. In each case, state whether the sentence is (always) true, (always) false, or sometimes true/sometimes false. Think in terms of position on a number line: choose x, and then determine where the other numbers live relative to x.
(a) $x+1=x$
(b) $x-1<x$
(c) $x+3 \geq x+2$
(d) $x-1<x+1$
sentence in one variable

A mathematical sentence that uses only one variable is called a sentence in one variable. The variable may appear any number of times; the key idea is that only one distinct letter appears in the sentence.

Consider the following examples:

- ' $3 x-1=x+2$ ' is an equation in one variable; here, the variable is x.
- ' $t+2 t-\frac{3}{t}>4$ ' is an inequality in one variable; here, the variable is t.
- ' $x+y=2$ ' is an equation in two variables. It is an equation because of the ' $=$ ' sign; it is an equation in two variables because two different variables (x and y) appear.

EXERCISES

19. Classify each of the following as an equation/inequality in n variables.
(a) $x+2 x=5-x$
(b) $x+y+z>0$
(c) $\frac{2 x-1}{x+4} \leq 5 x$
(d) $a+b=2 b-3-5 a$
20. Why do you suppose the author chose the letter n (as opposed to, say, t) to represent the number of variables in the instructions to the previous problem?

When is a sentence TRUE?

People are very often interested in knowing when a mathematical sentence is true. The following definitions are useful in this context:

DEFINITION Let S denote a sentence in one variable. A number that makes S true is called
solution of a sentence in one variable;
solution set
a solution of the sentence.
The set of all number(s) that make S true is called the solution set of the sentence.
a variable can be used to represent a sentence
EXERCISE 21. What is the universal set for the variable S in the previous definition?

EXAMPLES

Notice that a variable can be used to represent a sentence, just as easily as it can be used to represent an expression!

EXERCISE 21. What is the universal set for the variable S in the previous definition?
Some mathematical sentences in one variable are investigated next. Notice how correct set notation has been used in reporting each solution set.

sentence	equation or inequality?	solution(s)	solution set
$x=0$	equation	0 is the only solution	\{0\}
$x-1=0$	equation	1 is the only solution	\{1\}
$x(x-1)=0$	equation	0 is a solution 1 is a solution (Why? Keep reading!)	$\{0,1\}$
$x(x-1)(x+2)=0$	equation	0 is a solution 1 is a solution -2 is a solution (Why? Keep reading!)	$\{0,1,-2\}$
$x>1$	inequality	all numbers to the right of 1 on a number line are solutions	$(1, \infty)$
$x \geq 1$	inequality	the number 1 , together with all numbers to the right of 1 , are solutions	$[1, \infty)$

equations of the form $x y=0$

A very important type of equation has been introduced in the previous example:

$$
(\text { something })(\text { something })=0
$$

This type of equation has zero on one side, and things being multiplied on the other side. How can a sentence of this form be true? To answer this question, consider the following:
Suppose I were to say to you:
I'm thinking of two numbers. When I multiply these numbers together, I get zero.
Can you tell me anything about the numbers I'm thinking of? Indeed! The only way that numbers can multiply to give zero is if at least one of the numbers is equal to zero:

$$
\begin{array}{lll}
3 \cdot 0=0 & 0 \cdot \frac{1}{2}=0 & 0 \cdot 0=0
\end{array}
$$

That is, in order for the sentence ' $x y=0$ ' to be true, either x must equal 0 , or y must equal zero (or both).
reconsider With this idea in mind, reconsider the equation:
the equation
$x(x-1)=0$

$$
x(x-1)=0
$$

The things being multiplied on the left-hand side are:

$$
x \quad \text { and } \quad x-1
$$

In order for the equation to be true, either:

$$
x=0 \quad \text { or } \quad x-1=0
$$

Consequently, the only numbers that make the equation true are 0 and 1 .
EXERCISE
22. What does the phrase 'at least one of the numbers is equal to zero' mean?
23. Suppose that the sentence ' $x y z=0$ ' is true. What (if anything) can be
said about x, y and z ?
24. Suppose that the sentence ' $(x+1)(x+2)(x-1) x=0$ ' is true. What (if
anything) can be said about x ?
graph of
a sentence

A graph is a pictorial display of information: often, a picture can convey information more effectively than other methods. Graphs take on a variety of forms, depending on the information that is to be displayed.

The graph of a sentence refers to a 'picture' illustrating the choice(s) that make the sentence true. Particularly when a sentence has lots of solutions, it is often easier to understand them via a 'picture'.

The graph of a sentence in one variable is a picture, on a number line, of the number(s) that make the sentence true: it is a picture of the number(s) in the solution set. The previous example is now repeated, this time giving both the solution set and the graph of each sentence:

line \#	sentence	solution set	graph of sentence				
1	$x=0$	\{0\}	,	,	-	1	1
			-2	-1	0	1	2
2	$x-1=0$	\{1\}	1	,	1	-	1
			-2	-1	0	1	2
3	$x(x-1)=0$	$\{0,1\}$	1	1	-		1
			-2	-1	0	1	2
4	$x(x-1)(x+2)=0$	$\{0,1,-2\}$	-	,	-	-	1
			-2	-1	0	1	2
5	$x>1$	$(1, \infty)$	1	,		\bigcirc	
			-2	-1	0	1	2
6	$x \geq 1$	$[1, \infty)$					
			-2	-1	0	1	2

nature of solution sets for equations versus inequalities

In the examples above, notice that equations seem to have a finite number of choices that make them true, whereas inequalities seem to have entire inter$\operatorname{val}(s)$ of numbers that make them true. This difference in the nature of the solution sets is one primary reason that people distinguish between the two broad categories of sentences: equations versus inequalities.
graphs aren't needed in simple cases

Most people wouldn't bother graphing the sentences in lines 1-4 above. (The verb 'graphing' refers to the process of making a graph.) The solution sets are so simple, that there's no insight gained from looking at the 'dots' on a number line, versus just looking at the solution set. Graphs are typically used to organize much larger amounts of information.

EXERCISE

25. For each sentence below, do the following:

- State how you might read the sentence aloud.
- Give the solution set, using correct set notation.
- Graph each sentence. That is, show, on a number line, the number(s) that make each sentence true.
(a) $x<2$
(b) $2>x$
(c) $x \geq 2$
(d) $2 \leq x$
reading a sentence 'backwards'

In the previous exercise, the choices for x that make (a) and (b) true are identical. The choices for x that make (c) and (d) true are also identical. This is not a coincidence:

- If you read the sentence ' $x<2$ ' in the normal way (from left to right) it is read as ' x is less than 2 '. This is true whenever x lies to the left of 2 .
- If you read the sentence ' $x<2$ ' 'backwards' (i.e., from right to left) then it becomes ' $2>x$ '. This is true whenever 2 lies to the right of x.

However, x lies to the left of 2 precisely when 2 lies to the right of x. Therefore, the solution sets are the same.

Even though the sentences ' $x<2$ ' and ' $2>x$ ' are read differently, and certainly look different, their truth values are always the same. Study the chart below:
$x \quad$ substitution into ' $x<2$ ' \quad substitution into ${ }^{\prime} 2>x$ '

1	$1<2$	(true)	$2>1$
3	$3<2$	(frue)	
2	$2<2$	(false)	$2>3$
(false)	$2>2$	(false)	
2	$1.8<2$	(true)	$2>1.8$ (true)

The sentences are true at the same time, and false at the same time. If one sentence is true, so is the other. If one sentence is false, so is the other. They are completely interchangeable, with respect to their truth values!

EXERCISE	26. Compare the truth values of the sentences ' $x \geq 2$ ' and ' $2 \leq x$ ' by filling in the chart below. The first one is done for you. \qquad substitution into ' $x>2$ ' substitution into ' $2<x$ '		
	3	$3 \geq 2$ (true)	$2 \leq 3$ (true)
	4		
	2		
	1		
	2.3		

EXERCISES
 web practice

Go to my homepage http://onemathematicalcat.org and navigate to my Algebra I course, which has about 170 sequenced lessons. It can be used as a complete year-long high school course, or one semester in college. You're currently looking at the pdf version-you'll see that the HTML version has unlimited, randomly-generated, online and offline practice in every section. It's all totally free. Enjoy!

| END-OF-SECTION |
| :--- | :--- |
| EXERCISES |

SECTION SUMMARY

I LIVE TWO BLOCKS WEST OF YOU

NEW IN THIS SECTION	HOW TO READ	MEANING
order		Order refers to a natural left/right ordering on a number line. Given numbers x and y, either x equals y; or x lies to the right of y; or x lies to the left of y.
$x<y$	'ex is less than wye'	true when x lies to the left of y on a number line; false otherwise
$x>y$	'ex is greater than wye'	true when x lies to the right of y on a number line; false otherwise
$x \leq y$	'ex is less than or equal to wye'	true when $x<y$ or $x=y$; false otherwise
$x \geq y$	'ex is greater than or equal to wye'	true when $x>y$ or $x=y$; false otherwise
greatest		lying farthest to the right on a number line
least		lying farthest to the left on a number line
at least		' x is at least k ' is equivalent to ' $x \geq k$ '
at most		' x is at most k ' is equivalent to ' $x \leq k$ '
equation		a mathematical sentence that uses the verb ' = '
inequality		a mathematical sentence that uses one of the four verbs: $<, \leq,>, \geq$
sentence in one variable		a mathematical sentence that uses only one variable
sentence in n variables		a mathematical sentence that uses n variables
solution of a sentence in one variable		Let S denote a sentence in one variable. A number that makes S true is called a solution of the sentence.
solution set		Let S denote a sentence in one variable. The set of all number(s) that make S true is called the solution set of the sentence.

NEW IN THIS SECTION	HOW TO READ	MEANING
equations of the form: $x y=0$		In order for the equation ' $x y=0$ ' to be true, either x must equal zero, or y must equal zero (or both).
graph		A pictorial display of information. Graphs take on a variety of forms, depending on the information that is to be displayed.
graph of a sentence	A 'picture' illustrating the choice(s) that make the sentence true. That is, a 'pic- ture' of the solution set of the sentence.	
graph of	A picture, on a number line, of the num- ber(s) that make the sentence true.	
a sentence in one variable		

SOLUTIONS TO EXERCISES:

 I LIVE TWO BLOCKS WEST OF YOU
IN-SECTION EXERCISES:

1. x must lie to the left of z
2. Nothing can be said: z could lie to the right of $x ; z$ could equal x; or z could lie to the left of x.
3. $-x$ must lie to the right of $-y$
4. y is bigger (farther from zero); x is smaller (closer to zero)

5a. 'one is less than three'; true
$5 b$. 'two is less than or equal to two'; true
$5 c$. 'negative one is greater than negative three'; true
5 d . 'negative one is less than negative three'; false
5e. 'ex is less than or equal to one'; ST/SF
5 f . 'ex is greater than or equal to negative one' ; ST/SF
5 g . 'negative one is greater than or equal to one'; false
5h. 'ex is greater than or equal to ex'; (always) true
6. Being 'bigger than' has to do with being farther from zero.

Being 'greater than' has to do with being farther to the right on the number line.
7. Greatest member: 4

Least member: 1
8. No greatest member: given any member, there is one that is farther to the right on the number line.

Least member: 1
9. Greatest member: -1

No least member: given any member, there is one that is farther to the left on the number line.
10. No greatest member; no least member. Zero is 'trying' to be the least member, but 0 isn't included in this set!

11. Greatest member: 1

No least member. Again, zero is 'trying' to be the least member, but 0 isn't in this set!

12a. 'For all ex greater than or equal to five ...' (Drop the word 'is'.)
12b. 'Let ex be greater than or equal to five.' (Drop the word 'is' ; add the word 'be'.)
13a. $t \leq 2$
13b. $t \geq 2$
13c. $y \leq-2$
13d. $y \geq-2$
14a. t is at most 4
14 b . t is at least 4
14c. y is at most -4
14d. y is at least -4
15. x is at most 5
x is at most $\frac{1}{3}$
x is at most -1 (There are infinitely many correct answers possible!)
16. $x=5$
$x=\frac{1}{3}$
$x=-1 \quad$ (There are infinitely many correct answers possible!)
17. $2 x+3 y=5$
$\frac{1}{2} x+y=4$
$x+7 y=\frac{1}{2} \quad$ (There are infinitely many correct answers possible!)
18a. equation; always false \qquad
18b. inequality; always true

18c. inequality; always true

x	$x+1$	$x+2$	$x+3$

18d. inequality; always true

1	1	1
$x-1$	x	$x+1$

19a. equation in one variable (x)
19b. inequality in three variables $(x, y$, and $z)$
19c. inequality in one variable (x)
19 d . equation in two variables (a and b)
20. The universal set for n is $\{1,2,3, \ldots\}$. You can't have, say, 1.5 variables. It is conventional to use letters near the middle of the alphabet (like i, j, k, m or n) to denote variables with a universal set that is a subset of \mathbb{Z}.
21. The universal set for S is the set of all possible sentences in one variable. Here are some members of the universal set for $S: \quad x=1, \quad x>1, \quad 2 x-1 \leq 3 x, \ldots$
22. ' x is at least one' means ' $x \geq 1$ '. So, one number, or more than one number, must equal zero.
23. At least one of x, y, or z must equal 0 . Here are some of the choices for x, y and z that make the sentence true:

x	y	z	substitution into $x y z=0$
0	1	2	$0 \cdot 1 \cdot 2=0$
0	0	2	$0 \cdot 0 \cdot 2=0$
1	0	$\frac{1}{2}$	$1 \cdot 0 \cdot \frac{1}{2}=0$
0	0	0	$0 \cdot 0 \cdot 0=0$

24. Either $x+1=0$ or $x+2=0$ or $x-1=0$ or $x=0$. That is, either $x=-1$ or $x=-2$ or $x=1$ or $x=0$. These are the only four values of x that make the sentence true.

25a. 'ex is less than two'; solution set $(-\infty, 2)$

25b. 'two is greater than ex'; solution set $(-\infty, 2)$

25 c. 'ex is greater than or equal to two'; solution set $[2, \infty)$

25 d . 'two is less than or equal to ex'; solution set $[2, \infty)$

26.

x	substitution into ' $x \geq 2$,	substitution into ${ }^{`} 2 \leq x^{\prime}$
4	$4 \geq 2$ (true)	$2 \leq 4$ (true)
2	$2 \geq 2$ (true)	$2 \leq 2$ (true)
1	$1 \geq 2$ (false)	$2 \leq 1 \quad$ (false)
2.3	$2.3 \geq 2$ (true)	$2 \leq 2.3$ (true)

END-OF-SECTION EXERCISES:
27. $x>1$
28. $x \geq 1$
29. $x \leq 3$
30. $x<3$
31. $(x+1)(x-2)=0$
32. $x=0$
33. $(x+1)(x)(x-2)=0$
34. $x<0$
35. $x \geq 0$
36. $x \leq 0$
37. $x \neq 0$
38.

39.
40.

41.

42.

