35. SOLVING ABSOLUTE VALUE EQUATIONS

solving equations involving absolute value

This section presents the tool needed to solve absolute value equations like these:

$$
\begin{gathered}
|x|=5 \\
|2-3 x|=7 \\
5-2|3-4 x|=-7
\end{gathered}
$$

Each of these equations has only a single set of absolute value symbols, and has a variable inside the absolute value. Solving sentences like these is easy, if you remember the critical fact that

absolute value gives distance from 0 .

Keep this in mind as you read the following theorem:

THEOREM tool for solving absolute value equations
$\qquad\|x\|=k \quad$ Let $x \in \mathbb{R}$, and let $k \geq 0$. Then,

$|x|=k$ is an entire class
of sentences

Recall first that normal mathematical conventions dictate that ' $|x|=k$ ' represents an entire class of sentences, including $|x|=2,|x|=5.7$, and $|x|=\frac{1}{3}$. The variable k changes from sentence to sentence, but is constant within a given sentence.

EXERCISES

1. a. Give three sentences of the form ' $|x|=k$ ' where $k \geq 0$. Use examples different from those given above.
b. Give three sentences of the form ' $x= \pm k$ ' where $k \geq 0$.
translating the theorem:
thought process for solving sentences like $|x|=k$

When you see a sentence of the form ' $|x|=k$ ', here's what you should do:

- Check that k is a nonnegative number.
- The symbol $|x|$ represents the distance between x and 0 .
- Thus, you want the numbers x, whose distance from 0 is k.
want numbers x, whose distance from 0

- You can walk from 0 in two directions: to the right, or to the left. Thus, there are two numbers whose distance from 0 is the nonnegative number $k: k$ and $-k$.

- Thus, $|x|=k$ is equivalent to $x= \pm k$.
filling in some blanks to help your
thought process

When you see a sentence like ' $|x|=7$ ', you thought process should be like filling in the following blanks:
We want the numbers \qquad , whose \qquad from \qquad is \qquad . Thus, we want \qquad to be \qquad or \qquad _.

The correctly-filled-in blanks are:
We want the numbers \underline{x}, whose distance from $\underline{0}$ is $\underline{7}$. Thus, we want \underline{x} to be $\underline{7}$ or -7 .

EXERCISES

EXAMPLE

solving a sentence
of the form
$|x|=k$
2. Fill in the blanks:
a. When you look at the sentence ' $|x|=5$ ', you should think: We want the numbers \qquad _, whose \qquad from \qquad is \qquad . Thus, we want \qquad to be \qquad or \qquad .
b. When you look at the sentence ' $|z|=\frac{1}{5}$ ', you should think: We want the numbers \qquad _, whose \qquad from \qquad is \qquad . Thus, we want \qquad to be \qquad or \qquad _.
c. When you look at the sentence ' $|x|=k$ ' (with $k \geq 0$), you should think: We want the numbers \qquad , whose \qquad from \qquad is
\qquad . Thus, we want \qquad to be \qquad or \qquad
3. Give a sentence, not using absolute value symbols, that is equivalent to:
a. $|x|=3$
b. $\quad|t|=4.2$
4. Give a sentence, using absolute value symbols, that is equivalent to:
a. $\quad x= \pm 7$
b. $\quad t=\frac{1}{3}$ or $t=-\frac{1}{3}$
5. Give a precise mathematical statement of the tool that says that a sentence like ' $|x|=5$ ' can be transformed to the equivalent sentence ' $x= \pm 5$ '.
6. Is the sentence ' $|x|=-6$ ' of the form described in the previous theorem? Why or why not?
7. Can the sentence ' $|x|-5=7$ ' be transformed to a sentence of the form described in the previous theorem? If so, what is the equivalent sentence?

Example: Solve: $|x|=5$

Solution:

$$
\begin{aligned}
& |x|=5 \\
& x= \pm 5
\end{aligned}
$$

The solution set is shaded below:

solving
more complicated
sentences
of the form
$|x|=k$;
x can be
ANYTHING!

The power of the tool

$$
|x|=k \quad \Longleftrightarrow \quad x= \pm k
$$

goes way beyond solving simple sentences like ' $|x|=5$ '. Since x can be any real number, you should think of x as merely representing the stuff inside the absolute value symbols. Thus, you could think of rewriting the tool as:

$$
\mid \text { stuff } \mid=k \quad \Longleftrightarrow \quad \text { stuff }= \pm k
$$

Thus, we have all the following equivalences:

$$
\begin{aligned}
& |\overbrace{2-3 x}^{\text {stuff }}|=7 \quad \Longleftrightarrow \overbrace{2-3 x}^{\text {stuff }}= \pm 7 \\
& |\overbrace{5 x-1}^{\text {stuff }}|=8 \Longleftrightarrow \overbrace{5 x-1}^{\text {stuff }}= \pm 8 \\
& |\overbrace{x^{2}-3 x+4}^{\text {stuff }}|=\frac{1}{5} \Longleftrightarrow \overbrace{x^{2}-3 x+4}^{\text {stuff }}= \pm \frac{1}{5} \\
& \text { and so on! }
\end{aligned}
$$

EXERCISES

8. For each of the following, write an equivalent sentence that does not use absolute value symbols. Do not solve the resulting sentences.
a. $\quad|1+2 x|=3$
b. $\left|7 x-\frac{1}{2}\right|=5$
c. $\left|x^{2}-8\right|=0.4$

EXAMPLE

Example: Solve: $|2-3 x|=7$
Solution: Be sure to write a nice, clean list of equivalent sentences.

$$
\begin{array}{ll}
|2-3 x|=7 & \text { original sentence } \\
2-3 x= \pm 7 & |x|=k \Longleftrightarrow x= \pm k \\
-3 x= \pm 7-2 & \text { subtract } 2 \text { from both sides } \\
x=\frac{ \pm 7-2}{-3} & \text { divide both sides by }-3 \\
x=\frac{7-2}{-3} \text { or } x=\frac{-7-2}{-3} & x= \pm k \Longleftrightarrow(x=k \text { or } x=-k) \\
x=-\frac{5}{3} \text { or } x=3 & \text { arithmetic }
\end{array}
$$

Checking gives:

$$
\begin{gathered}
\left|2-3\left(-\frac{5}{3}\right)\right| \stackrel{?}{=} 7 \\
|2+5| \stackrel{?}{=} 7 \\
7=7 \\
|2-3(3)| \stackrel{?}{=} 7 \\
|-7| \stackrel{?}{=} 7 \\
7=7
\end{gathered}
$$

EXAMPLE

an alternate approach to the previous example

Example: Here, the previous example is repeated, except this time without using the ' \pm ' notation. Use whichever approach is more comfortable for you. Solve: $|2-3 x|=7$

Solution:

$$
\begin{gathered}
|2-3 x|=7 \\
2-3 x=7 \quad \text { or } 2-3 x=-7 \\
-3 x=5 \quad \text { or } \quad-3 x=-9 \\
x=-\frac{5}{3} \quad \text { or } x=3
\end{gathered}
$$

an alternate form
for the check

Here is an alternate way to write down the check, which is a bit more compact. This method works nicely when the the original equation has a constant on one side. Notice that the value of x is substituted into the side of the equation containing the variable, and it is shown to equal the desired constant.

$$
\begin{gathered}
\left|2-3\left(-\frac{5}{3}\right)\right|=|2+5|=7 \\
|2-3(3)|=|-7|=7
\end{gathered}
$$

EXERCISES

9. Solve. Write a nice, clean list of equivalent sentences. Check your solutions.
a. $|1+2 x|=3$
b. $|7 x-5|=2$
c. $|4-9 x|=1$

What happens if k is negative in the sentence ${ }^{\prime}|x|=k$ '?

What about a sentence like ' $|x|=-5$ ', where the absolute value is equal to a negative number? Notice that this situation is not covered in the previous theorem, since the sentence ' $|x|=k$ ' is only addressed with $k \geq 0$.
Recall that $|x| \geq 0$ for all real numbers x. Thus, the sentence ' $|x|=-5$ ' is never true: the left-hand side is always greater than or equal to 0 , and the right-hand side is less than 0 :

$$
\overbrace{|x|}^{\geq 0}=\overbrace{-5}^{<0}
$$

Even when x is 5 or -5 , the sentence is false, as shown below:

x	substitution into ${ }^{`}\|x\|=-5$,	true or false?
5	$\|5\|=-5$	false
-5	$\|-5\|=-5$	false

Whenever you're working with a sentence of the form ' $|x|=k^{\prime}$, you must always check first that $k \geq 0$. If k is negative, you just stop and say that the sentence is always false. Here are some examples, which illustrate different ways that you can state your answer:
$'|x|=-3$ ' is always false.
' $|2 x-1|=-5$ ' is never true.
${ }^{\prime}\left|3 x-5 x^{2}+7\right|=-0.4$ ' has an empty solution set.

EXERCISES

10. Decide which of the following sentences are always false. Do NOT solve the sentences.
a. $\quad|x|=-9$
b. $\quad|x|=0$
c. $|3 x-5|=-4.7$
d. $|1-4 x|+5=0$
e. $-2\left|x^{2}+3 x-1\right|=8$
f. $\quad|9 x+1|-5=-3$

EXAMPLE
putting a
sentence in
standard form first

Sometimes you need a few transformations to get an equivalent sentence in the form $|x|=k$, as the next example illustrates.
Solve: $5-2|3-4 x|=-7$

$$
\begin{aligned}
& 5-2|3-4 x|=-7 \\
& -2|3-4 x|=-12 \\
& |3-4 x|=6 \\
& 3-4 x=6 \text { or } 3-4 x=-6 \\
& -4 x=3 \quad \text { or } \quad-4 x=-9 \\
& x=-\frac{3}{4} \quad \text { or } \quad x=\frac{9}{4}
\end{aligned}
$$

original sentence
subtract 5 from both sides
divide both sides by -2
$|x|=k \quad \Longleftrightarrow \quad x= \pm k$
addition property of equality
multiplication property of equality

Checking:

$$
\begin{aligned}
& 5-2\left|3-4\left(-\frac{3}{4}\right)\right|=5-2|3+3|=5-2|6|=5-2(6)=5-12=-7 \\
& 5-2\left|3-4\left(\frac{9}{4}\right)\right|=5-2|3-9|=5-2|-6|=5-2(6)=5-12=-7
\end{aligned}
$$

EXERCISES

11. Solve and check each of the following equations. Be sure to write a nice, clean list of equivalent equations.
a. $\quad 7-5|1-2 x|=-3$
b. $\quad-3|2 x-1|-5=-4$
c. $\quad 2|3 x-5|-1=7$

EXERCISES

web practice

Go to my homepage http://onemathematicalcat.org and navigate to my Algebra I course, which has about 170 sequenced lessons. It can be used as a complete year-long high school course, or one semester in college. You're currently looking at the pdf version-you'll see that the HTML version has unlimited, randomly-generated, online and offline practice in every section. It's all totally free. Enjoy!

SOLUTION TO EXERCISES:

 SOLVING ABSOLUTE VALUE EQUATIONS1. a. $|x|=1,|x|=7.2$, and $|x|=\frac{1}{2}$
b. $x= \pm 1, x= \pm 7.2$, and $x= \pm \frac{1}{2}$
2. a. We want the numbers \underline{x}, whose distance from $\underline{0}$ is $\underline{5}$. Thus, we want \underline{x} to be $\underline{5}$ or $\underline{-5}$.
b. We want the numbers \underline{z}, whose distance from $\underline{0}$ is $\frac{1}{5}$. Thus, we want \underline{z} to be $\frac{1}{5}$ or $-\frac{1}{5}$.
c. We want the numbers \underline{x}, whose distance from $\underline{0}$ is \underline{k}. Thus, we want \underline{x} to be \underline{k} or $\underline{-k}$.
3. a. $|x|=3$ is equivalent to $x= \pm 3$
b. $|t|=4.2$ is equivalent to $t= \pm 4.2$
4. a. $x= \pm 7$ is equivalent to $|x|=7$
${ }^{\prime} t=\frac{1}{3}$ or $t=-\frac{1}{3}$ ' is equivalent to $|t|=\frac{1}{3}$
5. For all real numbers x, and for $k \geq 0,|x|=k$ is equivalent to $x= \pm k$.
6. The sentence ' $|x|=-6$ ' is not of the form in the theorem, because -6 is a negative number.
7. The sentence ' $|x|-5=7$ ' can be transformed to ' $|x|=12$ ' by adding 5 to both sides.
8. a. $|1+2 x|=3$ is equivalent to $1+2 x= \pm 3$
b. $\left|7 x-\frac{1}{2}\right|=5$ is equivalent to $7 x-\frac{1}{2}= \pm 5$
c. $\left|x^{2}-8\right|=0.4$ is equivalent to $x^{2}-8= \pm 0.4$
9. a.

$$
\begin{gathered}
|1+2 x|=3 \\
1+2 x=3 \text { or } 1+2 x=-3 \\
2 x=2 \text { or } 2 x=-4 \\
x=1 \text { or } x=-2
\end{gathered}
$$

Check: $|1+2(1)|=|1+2|=|3|=3$;
$|1+2(-2)|=|1-4|=|-3|=3$
b.

$$
\begin{gathered}
|7 x-5|=2 \\
7 x-5=2 \text { or } 7 x-5=-2 \\
7 x=7 \text { or } 7 x=3 \\
x=1 \text { or } x=\frac{3}{7}
\end{gathered}
$$

Check: $|7(1)-5|=|2|=2$;
$\left|7\left(\frac{3}{7}\right)-5\right|=|3-5|=|-2|=2$
c.

$$
\begin{gathered}
|4-9 x|=1 \\
4-9 x=1 \quad \text { or } 4-9 x=-1 \\
-9 x=-3 \quad \text { or } \quad-9 x=-5 \\
x=\frac{1}{3} \quad \text { or } x=\frac{5}{9}
\end{gathered}
$$

Check: $\left|4-9\left(\frac{1}{3}\right)\right|=|4-3|=1 ;\left|4-9\left(\frac{5}{9}\right)\right|=|4-5|=|-1|=1$
10. (a), (c), (d), and (e)are always false; some explanations follow:

Note that $|1-4 x|+5=0$ is equivalent to $|1-4 x|=-5$.
Note that $-2\left|x^{2}+3 x-1\right|=8$ is equivalent to $\left|x^{2}+3 x-1\right|=-4$.
Note that $|9 x+1|-5=-3$ is equivalent to $|9 x+1|=2$.
11. a.

$$
\begin{gathered}
7-5|1-2 x|=-3 \\
-5|1-2 x|=-10 \\
|1-2 x|=2 \\
1-2 x=2 \text { or } 1-2 x=-2 \\
-2 x=1 \text { or }-2 x=-3 \\
x=-\frac{1}{2} \text { or } x=\frac{3}{2}
\end{gathered}
$$

Check:
$7-5\left|1-2\left(-\frac{1}{2}\right)\right|=7-5|1+1|=7-5(2)=7-10=-3$

$$
7-5\left|1-2\left(\frac{3}{2}\right)\right|=7-5|1-3|=7-5|-2|=7-5(2)=7-10=-3
$$

b.

$$
\begin{gathered}
-3|2 x-1|-5=-4 \\
-3|2 x-1|=1 \\
|2 x-1|=-\frac{1}{3}
\end{gathered}
$$

always false!
c.

$$
\begin{gathered}
2|3 x-5|-1=7 \\
2|3 x-5|=8 \\
|3 x-5|=4 \\
3 x-5=4 \text { or } 3 x-5=-4 \\
3 x=9 \text { or } 3 x=1 \\
x=3 \text { or } x=\frac{1}{3}
\end{gathered}
$$

Check:

$$
\begin{gathered}
2|3(3)-5|-1=2|9-5|-1=2|4|-1=2(4)-1=8-1=7 \\
2\left|3\left(\frac{1}{3}\right)-5\right|-1=2|1-5|-1=2|-4|-1=2(4)-1=8-1=7
\end{gathered}
$$

