NAME:
NUMBER:

QUIZ over Section 5 in the 'CAT' book; 20 points.

1. Let x, y, and z be real numbers.
(2 pts) (1 pt) Suppose that x lies to the right of y, and y lies to the right of z. What (if anything) can be said about the relationship between x and z ?
(1 pt) Suppose that x and y are both negative, and x lies to the left of y on the number line. What (if anything) can be said about the relationship between $-x$ (the opposite of x) and $-y$ (the opposite of y)?
2. State how you would read each of the following sentences. Then, state
(2 pts) whether the sentence is (always) true, (always) false, or ST/SF:
(1 pt) $-1<-3$
(1 pt) $x \geq x$
3. Fill in the blanks:
(2 pts) Being 'bigger than' has to do with being
Being 'greater than' has to do with being
\qquad
\qquad
4. (1 pt) Consider the set $S=\{0,2,4\}$. What is the greatest member? The (3 pts) least?

GREATEST: LEAST:
(1 pt) Consider the set $S=\{-1,-2,-3, \ldots\}$. Does S have a greatest member? A least member? If so, what are they?
GREATEST (if it exists): LEAST (if it exists):
(1 pt) Consider the set of nonnegative real numbers, $[0, \infty)$. Does this set have a greatest member? A least member?
GREATEST (if it exists): LEAST (if it exists):
5. Remember that mathematical sentences are often read in slightly different
(2 pts) ways, depending on their context. How would you read the sentence ' $x>1$ ' in each of the following contexts?
(a) For all $x>1 \ldots$
(b) Let $x>1$.
6. Translate each phrase into a mathematical sentence:
$(2 \mathrm{pts}) \quad(1 \mathrm{pt}) x$ is at most 3
$(1 \mathrm{pt}) t$ is at least -2
7. Translate each sentence into an English phrase using the words 'at least' or 'at most':
(1 pt) $x \geq 4$
(1 pt) $y \leq 2$
8. Give three sentences of the form $y=k$. (Each sentence should use the variable (1 pt) $\quad y$, but not k.) FIRST:

SECOND:
THIRD:
9. Give an example of:
(2 pts) an INEQUALITY in 2 variables:
an EQUATION in one variable:
10. Suppose that the sentence $x(x-1)(x+3)=0$ is true. What (if anything) can (2 pts) be said about x ?

