QUIZ over Section 5 in the 'CAT' book; 20 points.

1.	Let x, y , and z be real numbers.	
(2 pts)	(1 pt) Suppose that x lies to the right What (if anything) can be said about	ight of y , and y lies to the right of z . t the relationship between x and z ?
	(1 pt) Suppose that x and y are boon the number line. What (if anythis between $-x$ (the opposite of x) and $-x$	th negative, and x lies to the left of y ng) can be said about the relationship y (the opposite of y)?
2. (2 pts)	State how you would read each of the following sentences. Then, state whether the sentence is (always) true, (always) false, or ST/SF: (1 pt) $-1 < -3$	
	$egin{array}{cccc} (1 \ { m pt}) & x \geq x \end{array}$	
3.	Fill in the blanks:	
(2 pts) Being 'bigger than' has to do with being		eing
	Being 'greater than' has to do with being	
4. (3 pts)	(1 pt) Consider the set $S = \{0, 2, 4\}$ least?	. What is the greatest member? The
	GREATEST:	LEAST:
	(1 pt) Consider the set $S = \{-1, -2, -3,\}$. Does S have a greatest member? A least member? If so, what are they?	
	GREATEST (if it exists):	LEAST (if it exists):
	(1 pt) Consider the set of nonnegative real numbers, $[0,\infty)$. Does this set have a greatest member? A least member?	
	GREATEST (if it exists):	LEAST (if it exists):
5. (2 pts)	Remember that mathematical sentences are often read in slightly different ways, depending on their context. How would you read the sentence ' $x > 1$ ' in each of the following contexts? (a) For all $x > 1$	
	(b) Let $x > 1$.	

6.	Translate each phrase into a mathematical sentence:
(2 pts)	(1 pt) x is at most 3

(1 pt) t is at least -2

7. Translate each sentence into an English phrase using the words 'at least' or (2 pts) 'at most':

 $(1 \text{ pt}) \quad x \ge 4$

 $(1 \text{ pt}) \quad y \leq 2$

8. Give three sentences of the form y = k. (Each sentence should use the variable y, but not k.) FIRST:

SECOND:

THIRD:

9. Give an example of: (2 pts) an INEQUALITY in 2 variables:

an EQUATION in one variable:

10. Suppose that the sentence x(x-1)(x+3) = 0 is true. What (if anything) can (2 pts) be said about x?