SOLUTIONS TO EXERCISES: MATHEMATICIANS ARE FOND OF COLLECTIONS

IN-SECTION EXERCISES:

1. The object(s) in a set are called the element(s) or member (s) of the set.

If a set has n members, where n is a whole number, then it is a finite set. Otherwise, it is an infinite set.
2. The sentence ' n is a whole number' is true when n is chosen from the set $\{0,1,2,3, \ldots\}$. Otherwise, the sentence is false.
4. The centered dots denote multiplication.
5. There are 5 members in the set $\{a, b, c, d, e\}$.

There are $5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=120$ different re-arrangements of the five-member set $\{a, b, c, d, e\}$.
6. Let $T=\{a, b, c, d, e\}$.
7. Let $S=\{7,8,9, \ldots\}$.

8a. T
8b. T
8c. F
8d. T
8e. ST/SF
10a. EXP, number
10b. EXP, set
10c. EXP, set
10d. SEN, T Read as: ' 5 is a member of the set of real numbers' or ' 5 is in the set of real numbers' or ' 5 is an element of the set of real numbers' or, most simply, ' 5 is a real number'
10e. SEN, F Read as: ' 5.1 is a member of the set of integers' or, most simply, ' 5.1 is an integer'
11a.

11b.

11c.

12 a . ' 1 is in the empty set '; false
12b. ' 0 is in the empty set'; false
12c. ' 0 is not in the empty set '; true
12 d . ' x is not in the empty set'; (always) true
13a. EXP, set
13b. EXP, set
13c. EXP, number
13d. EXP, set
13e. SEN, F ' 1 is in the the set of real numbers between 1 and 2 , including 2 but not including 1 '
13f. SEN, T ' 1 is in the set of real numbers between 1 and 2 , including 1 but not including 2 '
14. The subsets of $\{a, b\}$ are: $\{a, b\}, \varnothing,\{a\},\{b\}$. There are four subsets.
15. The subsets of $\{0,2,4\}$ are: $\{0,2,4\}, \varnothing,\{0\},\{2\},\{4\},\{0,2\},\{0,4\},\{2,4\}$. There are eight subsets.

16a. The set $\{-1,2,3\}$ is a subset of \mathbb{R}, since every member of $\{-1,2,3\}$ is a real number.
16 b . The set $\{-1,2,3\}$ is not a subset of the whole numbers, because -1 is not a whole number.
16 c . The set $\{-1,2,3\}$ is a subset of the integers, since every member of $\{-1,2,3\}$ is an integer.
16 d . The set $\{-1,2,3\}$ is a subset of the interval $(-2, \infty)$, since every member of $\{-1,2,3\}$ is in the interval $(-2, \infty)$.

END-OF-SECTION EXERCISES:

17. EXP, set
18. SEN, T
19. SEN, T
20. EXP, set
21. SEN, F
22. SEN, T
23. SEN, T
24. $\{-1,0,1\}$
25. $(-1,1]$
26. $[0,2)$
27. $(-\infty, 1]$
28. $(-1, \infty)$
29. There are eight subsets of $\{-1,0,1\}:\{-1,0,1\}, \varnothing,\{-1\},\{0\},\{1\},\{-1,0\},\{-1,1\},\{0,1\}$.
30. The set of positive integers is a subset of $(-1, \infty)$, since every positive integer is in the interval $(-1, \infty)$.
