SOLUTIONS TO EXERCISES: NUMBERS HAVE LOTS OF DIFFERENT NAMES!

IN-SECTION EXERCISES:

1. STEP 1: $\overbrace{0}^{0 \text { pets }}+2=2$; write down the number (2), and circle it.

Since you own fewer than 2 pets, go to STEP 2 .
STEP 2: $2-\overbrace{0}^{0 \text { pets }}=2 ; 2 \cdot(2)=\boxed{4}$; write down the number $\boxed{4}$, and put a box around it. Go to STEP 4.
STEP 4: $\overbrace{0}^{0 \text { pets }} \cdot \overbrace{0}^{0 \text { pets }}=0 ; \quad 0+\boxed{4}=4$
2. STEP 1: $\overbrace{7}^{7 \text { pets }}+2=9$; write down the number (9), and circle it.

Since you own more than 2 pets, go to STEP 3.
STEP 3: $\overbrace{7}^{7 \text { pets }}-2=5 ; \quad$ opposite is $-5 ; \quad(-5) \cdot(9)=-45$. Write down the number -45 and put a box around it.
STEP 4: $\overbrace{7}^{7 \text { pets }} \cdot \overbrace{7}^{7 \text { pets }}=49 ; \quad 49+(\boxed{-45})=4$
3. $2 \cdot 8+5 \cdot 4$: give 2 pieces of candy to each of 8 kids, and 5 pieces of candy to each of 4 kids; OR give 2 pieces to each of 8 kids, and 4 pieces to each of 5 kids; OR give 8 pieces to each of 2 kids, and 5 pieces to each of 4 kids.
$5 \cdot 7+1$: give 5 pieces of candy to each of 7 kids, with 1 piece left over.
4.
name for 60 information revealed by name

$6 \cdot 10$	give 6 pieces of candy to each of 10 kids; or give 10 pieces of candy to each of 6 kids
$3 \cdot 20$ or $20 \cdot 3$	60 pieces of candy can be evenly distributed among 3 kids, by giving 20 pieces to each
$7 \cdot 8+4$ or $8 \cdot 7+4$	give 7 pieces of candy to each of 8 kids, with 4 pieces left over
$16 \cdot 3+2 \cdot 6$	give 16 pieces to each of 3 kids, and 2 pieces to each of 6 kids; OR give 3 pieces to each of 16 kids, and 6 pieces to each of 2 kids; OR give 3 pieces to each of 16 kids, and 2 pieces to each of 6 kids.
$\frac{1}{3}(180)$	give one-third of a piece to each of 180 kids

5. The universal set for x is \mathbb{R} because the theorem says 'For all real numbers $x \ldots$ '.
6. You can add zero to any real number, and this doesn't change the identity of the number. Adding zero gives a new name for a number, but doesn't change where it lives on a real number line. Consequently, the number 0 is often given the fancy name 'additive identity'.
7. The universal set for x is \mathbb{R} because the theorem says 'For all real numbers $x \ldots$ '.
8. You can multiply any real number by 1 , and this doesn't change the identity of the number.

Multiplying by 1 gives a new name for a number, but doesn't change where it lives on a real number line. Consequently, the number 1 is often given the fancy name 'multiplicative identity'.
9. (a) $0=5+(-5)=(-5)+5=5-5$
(b) $0=\frac{1}{2}+\left(-\frac{1}{2}\right)=\left(-\frac{1}{2}\right)+\frac{1}{2}=\frac{1}{2}-\frac{1}{2}$
(c) $0=3.2+(-3.2)=(-3.2)+3.2=3.2-3.2$
(d) $0=(-7)+7=7+(-7)$
10. (a) $1=\frac{5}{5}=5 \cdot \frac{1}{5}=\frac{1}{5} \cdot 5$
(b) $1=\frac{1 / 2}{1 / 2}=\frac{1}{2} \cdot 2=2 \cdot \frac{1}{2}$
(c) $1=\frac{3.2}{3.2}=3.2 \cdot \frac{1}{3.2}=\frac{1}{3.2} \cdot 3.2$
(d) $1=\frac{-7}{-7}=-7 \cdot \frac{1}{-7}=\frac{1}{-7} \cdot(-7)$ When a negative number comes after a centered dot, it is customary to put the negative number insides parentheses, because $\frac{1}{-7} \cdot-7$ can look somewhat confusing.
11. (a) true
(b) Since ' $2+3=5+1$ ' is false, the entire sentence ' $2+3=1+5=6$ ' is false. Students sometimes 'string' things together with equal signs as they work through a calculation, using ' $=$ ' to mean something like 'I'm going on to the next step'. DON'T DO THIS! BE CAREFUL!
(c) true: $1+2+3=1+5$ is true, and $1+5=6$ is true.
(d) true for all nonzero real numbers t; not defined if $t=0$
(e) true
(f) $1+(2+3)+4=5$ is false; $5=1+5$ is false; $1+5=6+4$ is false; $6+4=10$ is true. The entire sentence is FALSE because there is at least one 'piece' that is false. (Indeed, in this case, three of the four subsentences are false!)
12. $a=b=c=d$ is shorthand for: $a=b$ and $b=c$ and $c=d$
13. (a) $1=\frac{1 \text { pint }}{2 \text { cups }}=\frac{2 \mathrm{cups}}{1 \text { pint }}$
(b) $1=\frac{1 \mathrm{~m}}{100 \mathrm{~cm}}=\frac{100 \mathrm{~cm}}{1 \mathrm{~m}}$
(c) $1=\frac{1 \text { bleep }}{3.4 \mathrm{blop}}=\frac{3.4 \mathrm{blop}}{1 \mathrm{bleep}}$
(d) $1=\frac{10 \text { kilometers }}{6.21 \text { miles }}=\frac{6.21 \text { miles }}{10 \text { kilometers }}$
14. $\frac{14 \mathrm{ft}}{0.5 \mathrm{sec}}=\frac{14 \mathrm{ft}}{0.5 \mathrm{sec}} \cdot \frac{1 \mathrm{mile}}{5280 \mathrm{ft}} \cdot \frac{60 \mathrm{sec}}{1 \mathrm{~min}} \cdot \frac{60 \mathrm{~min}}{1 \mathrm{hr}}=\frac{14 \cdot 60 \cdot 60}{0.5 \cdot 5280} \frac{\mathrm{miles}}{\mathrm{hr}} \approx 19.1 \mathrm{mph}$: the passing car is going about 19 miles/hour faster than my car.

END-OF-SECTION EXERCISES:

15. EXP (simplest name: 36)
16. SEN, true
17. SEN, false (Don't use ' $=$ ' to mean that you're going on to the next step!)
18. SEN, always true
19. SEN, true
20. SEN, true
21. EXP (simplest name: 4 yd)
22. $1=\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}=4 \cdot \frac{1}{4}$; put in four $\frac{1}{4}$-cup measures!
23. (a) $630 \mathrm{sec}=630 \mathrm{sec} \cdot \frac{1 \mathrm{~min}}{60 \mathrm{sec}}=\frac{630}{60} \mathrm{~min}=10.5 \mathrm{~min}$
(b) $525 \mathrm{sec}=525 \mathrm{sec} \cdot \frac{1 \mathrm{~min}}{60 \mathrm{sec}} \cdot \frac{1 \mathrm{hr}}{60 \mathrm{~min}}=\frac{525}{60 \cdot 60} \mathrm{hr} \approx 0.15 \mathrm{hr}$
(c) $20 \mathrm{ft} / \mathrm{sec}=\frac{20 \mathrm{ft}}{1 \mathrm{sec}} \cdot \frac{60 \mathrm{sec}}{1 \mathrm{~min}} \cdot \frac{1 \mathrm{mile}}{5280 \mathrm{ft}}=\frac{20 \cdot 60}{5280} \mathrm{miles} / \mathrm{min} \approx 0.23 \mathrm{miles} / \mathrm{min}$
(d) $\frac{20 \mathrm{ft}}{0.5 \mathrm{sec}}=\frac{20 \mathrm{ft}}{0.5 \mathrm{sec}} \cdot \frac{60 \mathrm{sec}}{1 \mathrm{~min}} \cdot \frac{60 \mathrm{~min}}{1 \mathrm{hr}} \cdot \frac{1 \mathrm{mile}}{5280 \mathrm{ft}}=\frac{20 \cdot 60 \cdot 60}{0.5 \cdot 5280} \mathrm{miles} / \mathrm{hour} \approx 27.3 \mathrm{miles} / \mathrm{hour}$
